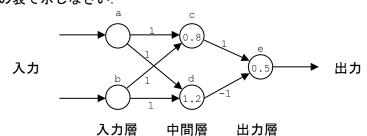
2021 年度 認知科学と人工知能 定期試験

注意:以下の問題において用いられる記号・用語などの表現は、特に断らない限り、講義において用いたものとする.なお、用語の問題においては同じ答となることはない.同じ答を書いた場合はその部分を0点とするので、注意すること.また、漢字で書くべきところを仮名で書いたり、誤字があったりした場合も0点とする(英語で解答してもよいが、スペルミスは同様に0点とする).

1. 次の文中の空欄 a ~ e に当てはまる用語を書きなさい.


人間の問題解決過程については、 a によりモデル化することができる.一方、 a は,エキスパートシステムで用いられる知識表現でもある. a は,人間の b に対応するワーキングメモリと長期記憶に対応する c ,およびそれらの内容を照合し,ワーキングメモリを書き換える d から構成される. c は if ~then 形式の e の集合から成る.

2. 下の表は「改訂長谷川式簡易知能評価スケール」と呼ばれる認知症 (痴呆症) の検査の質問項目を抜粋したものである. これについて説明した文章の空欄 a ~ e に当てはまる用語を入れなさい.

番号	質問項目						
4	これから言う3つの言葉を言ってみてください. あとでまた聞きます						
	のでよく覚えておいてください. (「桜、猫、電車」と言う.)						
5	100から7を順番に引いてください(「100-7は?」「それから7を引						
	くと?」と聞く.)						
8	これから5つの品物を見せます. それを隠しますので何があったか言						
	ってください(1つずつ名前を言いながら並べ覚えさせてから隠す.						
	時計, くし, はさみ, タバコ, ペンなど相互に無関係なものを使う.)						

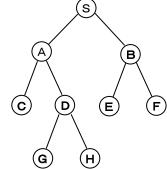
この検査は広い意味での記憶の機能を調べるものとなっている. 項目 4 は言葉の a と b の問題であるが, 保持時間の長さで区分すれば c 記憶に関わるものである. 項目 5 は計算の問題であるが, 処理を伴う記憶の機能を調べるという意味で, d 記憶に関わるものである. 一方, 項目 8 ではまず物品の名前を a させてから b させているが, もともと名前を知っている物品を使用しているので, 一般的な事実に関する記憶や知識という点では, e 記憶や e 知識を前提とする問題である.

A 3. 下図は形式ニューロンにより構成された回路の例であり、矢印はユニット間の結合を、矢印に付けられた数字は結合の重みを、丸印の中の数字は閾値を示す. この回路で XOR 演算が行えることを下記の表で示しなさい.

a で の値	b で の値	c での計算過程と結果	d での計算過程と結果	e での計算過程と結果
0	0	$y_c =$	$y_d =$	$y_e =$
0	1	$y_c =$	$y_d =$	$y_e =$
1	0	$y_c =$	$y_d =$	$y_e =$
1	1	$y_c =$	$y_d =$	$y_e =$

ただし、マカロックとピッツによる形式ニューロンの情報処理のモデルは以下の式で示されるとする.

$$y = 1 \left[\sum_{i=1}^{n} w_{i} x_{i} - \theta \right] \quad \text{tetel}, \quad 1[u] = \begin{cases} 1 & (u \ge 0) \\ 0 & (u < 0) \end{cases}$$


ここで、 x_i はニューロンへの入力、 w_i はシナプスの結合の重み、 θ は閾値、y はニューロンの出力を示している。

4. 問題の状態空間を系統的に探索する方法について考えてみよう.

(1)右図のような閉路を含まないグラフによる表現形式を何と呼ぶか?

()

(2) 縦型探索(深さ優先探索)や横型探索(幅優先探索)のような系統的な探索においては、以下のようなアルゴリズムで探索を行う(注:open リストとは今後調べなければならない節点のリストのことをいう).

初期節点を open リストに入れる
LOOP: もし open リストが空ならば失敗として終了
n に open リストの最初の要素を入れる
n が目標節点ならば n を返して成功として終了
open リストから n を取り除く
open リストの内容を更新する
LOOPに戻る

系統的な探索では、節点を展開させ、open リストの内容を更新する、縦型探索の場合は、展開したすべての子節点を open リストの 先頭に入れる。一方、まだ展開されていない節点が open リストの 後ろに残る。以上のことから、上の図の状態空間を縦型探索で最後 まで探索した場合の探索順序を示しなさい。※左右については左を 優先して探索するとする。

$$(S \rightarrow)$$

(3) 上記の場合に open リストがどのように変化するか示しなさい

$$(S) \rightarrow$$

- 5. 認知科学と人工知能に関わる、次の各説明文に相当する用語を答えなさい。
- \mathbb{C} (1)人間の感覚において刺激の強さ Sとそれに対する弁別閾 ΔS の比は一定であるとする法則 ()
- C(2) 特定の感覚機能や運動機能との直接的な関係が明確でなく、 高次な機能が営まれる、大脳皮質の3分の2を占める部分 ()
- C(3) 高等動物の行動は刺激とそれに対する反応では説明できない ことが多いという立場に立ち、行動主義心理学と対比される心 理学 ()
- A(4) 従来の固定的な計算機視覚ではなく、環境に相互作用的に働きかける機械による視覚 ()
- C(5) 現実世界と人工世界を融合して活用する技術で、バーチャルリアリティを発展させたもの ()

(裏面への解答不可)

授業科目名	担当者名	開講曜時	金曜日3講時	理工学部	氏	学	籍	番	号	採	点
認知科学と人工知能	小堀	実施	1月28日3講時	学科	名	Т					
		日	I月 28日 3 講時	午							