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Abstract 

Visuomotor manual tracking is a well-established method for 
studying the neural processes and computations underlying 
skilled action.  Human subjects quickly and efficiently learn 
to track a target moving at constant velocity.  Here, we 
measure tracking performance in two separate groups of 
participants while either the target or the manual cursor was 
suppressed for a brief period during each tracking trial.  
Subjects learned to maintain accurate tracking through 
periods of target or cursor suppression.  During the 
suppressed period, feedback-error-driven mechanisms cannot 
be used, and tracking performance therefore relies on 
prediction alone.  We used this manipulation to show that 
motor learning involves acquiring predictive models of the 
target motion and also of one’s own hand movement.  We 
also used a transfer of learning design to investigate whether 
acquiring models of target motion and of one’s own hand 
motion involved linked or independent neural modules.  We 
found clear positive transfer from learning to predict one’s 
own manual action to learning target motions, and no 
evidence for transfer in the reverse direction.  This 
asymmetric pattern suggests specific predictive neural 
mechanisms for learning to control one’s own action, as 
opposed to general prediction of external events.  We suggest 
that learning internal representations of one’s own motor 
systems may play an important role in learning about the 
perceptual world. 

Introduction 
Motor learning is a fundamental feature of all motor 
performance.  Pursuit tracking is well-established 
experimental paradigm for studying motor learning (Poulton, 
1974).  In pursuit tracking, the subject moves a manual lever 
to ensure that a visual cursor tracks a moving visual target 
on a screen.  Early studies of tracking distinguished two 
components of the tracking motor response.  First, subjects 
may make rapid movements to reposition their cursor on the 
target, typically catching up with the target, and then falling 
behind again.  Such movements are intermittent, often with 
a frequency of around 1-2 Hz (Miall et al., 1993; Netick & 
Klapp, 1994).  Tracking becomes more intermittent when 
the target moves unpredictably.  Therefore, this component 
of the tracking response is assumed to involve visual 
feedback-error-driven correction.  The subject sees a visual 
discrepancy between target position and cursor position, and 
moves the cursor to reduce this error to zero, only for the 
error to increase again. 

Several lines of evidence suggest, however, that tracking 
is not purely feedback-driven, but also involves prediction.  
For example, motor output during tracking can be smooth 
rather than intermittent, and can sometimes lead the target 
rather than lag behind it.  Moreover, tracking performance is 
typically better when the target moves in a predictable 
fashion (e.g., at constant velocity), than when it moves less 
predictably (Poulton, 1974).  Finally, subjects can track 
accurately even when absence of either the target or the 
cursor signal makes error-detection impossible (Beppu et al., 
1987).  

The predictive element of tracking is often attributed to 
learning of internal models.  Several studies have suggested 
the existence of internal models in addition to sensory 
feedback mechanisms.  For example, functional imaging 
studies have separated specific neural activity related to 
acquisition of internal models from other neural activity 
associated with error correction (Imamizu et al., 2000).  
However, it is unclear precisely what is represented by such 
models, and how many separate models are involved.  In 
computational terms, successful tracking requires a 
representation of current target position and of current 
hand/cursor position.  Models which estimate the current 
output of a system given its inputs are termed ‘forward 
models’.  Thus, tracking performance could potentially 
involve two separate internal forward models.  One model 
would estimate or predict the current position of the target 
based on its previous kinematic history.  Another would 
estimate or predict the current position of the hand-cursor, 
based on the current motor command and any available 
proprioceptive feedback.   We will call these putative 
models the target forward model and motor forward model 
respectively. 

Learning is a key feature of all internal models.  In 
manual tracking, the goal is to make the output of the motor 
forward model equal to the output of the target forward 
model.  Clearly, internal models are useful for tracking only 
if their predictions are correct.  According to one 
computational theory, visual feedback error provides an 
important learning signal which can be used to update the 
internal models (Kawato & Gomi, 1992).   

Relatively few studies have investigated whether skilled 
tracking involves the learning and use of two dissociable 
models for target and for motor output, respectively.  
Evidence for predictive mechanisms in tracking is consistent 
with either a target forward model, or a motor forward 
model, or both.  Recent computational studies have 
demonstrated efficiency and robustness of modular 
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architectures for model learning.  For example, multiple 
motor models may be learned, with one model 
corresponding to each task performed or object used 
(Wolpert & Kawato, 1998; Wolpert et al., 1998).  However, 
in those architectures, the brain is assumed to learn multiple 
instances of the same general type of model.  In pursuit 
tracking, however, the putative target model and motor 
model would use qualitatively different types of information.  
They perform dissociable information-processing functions, 
rather than being parallel instances of a single function.  For 
example, the motor model refers to effects of the subject’s 
voluntary motor commands on hand position, while the 
target model refers only to visual objects in external space.   

One promising method for investigating the possible 
dissociation of target and motor models in tracking involves 
comparing the effects of target suppression and cursor 
suppression (Beppu et al., 1987).  In target suppression, 
subjects track a predictably moving target.  The target 
disappears at some point during the track, while the cursor 
remains visible.  In cursor suppression, the cursor 
disappears but the target remains visible.  Subjects continue 
to track for some interval, and the target or cursor display is 
then restored.  No visual error signal is present during 
target-suppressed and cursor-suppressed tracking.  Target 
and cursor are not simultaneously visible, so their 
discrepancy cannot be computed. 

Thus, tracking performance during suppression reflects 
only the contributions of internal models, but the 
involvement of these models depends on what is suppressed.  
When the target is suppressed, the only representation of the 
tracking target comes from a putative target model which 
predicts the current target position from its previous motion.  
Therefore, poor tracking during target suppression can be 
attributed to an incorrect target model.  Conversely, when 
the cursor is suppressed, the only representation of the 
current cursor position comes from the putative motor 
model.  This model predicts the current cursor position from 
current motor commands and proprioceptive information.  
Therefore, poor tracking during cursor suppression can be 
attributed to an incorrect motor model. 

If the target reappears after a period of target suppression, 
or if the cursor reappears after a period of cursor 
suppression, a visual feedback error signal is again available.  
This error signal can be used to update the target model in 
the case of target suppression, or the motor model in the 
case of cursor suppression.  Learning and updating of these 
models would lead to improved tracking performance 
during the suppression period of subsequent trials. 

We have used the target and cursor suppression approach 
to investigate the internal models used during tracking, and 
their updating during motor learning. We have focused on 
identifying differences in tracking behavior between target 
and cursor suppression conditions.  If target-suppressed and 
cursor-suppressed conditions show differences in either 
short-term performance, or in longer-term learning, then this 
would provide strong evidence for the existence of separate 
and dissociable internal models for these two components of 
skilled action.  We therefore measured tracking error during 
both target and cursor suppression, and described the 
learning curve in each condition.  We assumed that 

suppression tracking involves a number of dissociable 
processes.  First, when the target or cursor disappears and 
suppressed tracking begins, the subject must rely on internal 
model-based tracking.  Second, when the target or cursor 
reappears, a second, visual feedback process will detect any 
error, and issue a feedback-driven motor correction.  We 
wanted to distinguish between these two processes, and 
obtain separate psychophysiological measures of learning-
related changes in each of them.  Finally, we investigated 
whether tracking involves learning just one internal model, 
or involves separate target and motor models using a 
learning transfer approach.  We reasoned that asymmetric 
transfer of between target suppression and cursor 
suppression conditions would imply separable learning 
processes under these conditions, and thus distinct internal 
models in each case. 

Methods 

Apparatus 
The experimental apparatus consisted of a joystick and 
computer display for tracking measurement system (Kobori  
& Haggard, 2003).  The apparatus is shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Experimental apparatus. 

Tracking 
Subjects observed a circular target (diameter 13 mm) 
moving at constant tangential velocity along a clockwise 
circular trajectory (diameter 148 mm) on a computer screen. 
The target cycle was 5 sec. The viewing distance was 66 cm.  
Each trial lasted 20 sec. Subjects held a modified joystick in 
their right hand, and moved it so that a visual cross hair 
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cursor (width 13 mm) tracked the target as closely as 
possible. 1 degree of joystick movement produced a cursor 
movement of 0.39 degrees of visual angle. Target and cursor 
positions were digitized and stored on the computer at 30 
Hz. Unsigned tracking error was calculated in subsequent 
analysis. 

Tracking trials were of 2 types, normal and suppressed 
tracking. In normal trials, the movements of the joystick 
produced congruent movements of the subject's cursor on 
the screen. In suppressed tracking, we blanked out either the 
target or the cursor during the trial. The disappearance 
occurred at an unpredictable time between 5 and 7 sec.  
Then, the target or cursor reappeared at a random time 
between 11 and 13 sec. 

Tracking error data from suppressed trials were aligned 
either to the time of disappearance, or reappearance of 
target/cursor as appropriate.  An epoch from 4 sec before 
until 4 sec after was selected for display.  Tracking error 
traces were then made for each subject in each block of the 
experiment. Analyses of normal trials used the average time 
of disappearance and reappearance across all suppressed 
trials (6 sec and 12 sec from trial onset) as the fictitious 
"event" for defining analysis epochs. 

Experimental design 
All experimental blocks consisted of 5 trials. Before the 
experiment, we explained the tracking task to the subject, 

and familiarized them with the equipment and apparatus. 
Then the experiment began with a pretest block of normal 
tracking trials. 

Next, subjects performed 6 learning blocks of target or 
cursor suppressed trials each. Then, subjects performed a 
posttest block of normal trials similar to the pretest block. 
The experiment ended with 2 transfer blocks of the other 
kind of suppressed trials which was not performed in the 
learning phase. 

Subjects took a break of a few minutes halfway through 
the experiment, between blocks 3 and 4 of the learning 
phase.  The subjects were instructed to continue tracking as 
accurately as possible when target or cursor disappeared.  
The procedures were approved by the local ethical 
committee. 

20 subjects were recruited from among the students of 
Ryukoku University. Subjects' ages ranged between 19 and 
24 years. 10 subjects were male, and 10 were female. None 
had any known neurological abnormality, and all were naive 
to the purposes of the experiment.  

We divided the subjects into 2 groups.  Each group 
included 5 males and 5 females. The target suppression 
group performed target-suppressed trials in the learning 
blocks and cursor-suppressed trials in transfer blocks.  The 
cursor suppression group performed cursor-suppressed trials 
in learning blocks and target-suppressed trials in transfer 
blocks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Grand average tracking error waveforms arranged by learning block. 
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Results 

Tracking data 
The grand average traces of unsigned tracking error for each 
learning block are shown in Figure 2.  Data from suppressed 
trials are aligned either to the time of disappearance, or the 
time of reappearance as appropriate.  The upper row shows 
the performance of the target suppression group at the point 
of target disappearance (panel A), and reappearance (panel 
B).  The data for the cursor suppression group is shown in 
the lower row (C, D).  L1 refers to learning block 1. 

Figure 2 shows that tracking error is low prior to 
disappearance in both groups, and was comparable to pretest 
and posttest normal tracking trials (not shown). Second, 
tracking error increases gradually and monotonically after 
disappearance, and continues until just after the 
reappearance of the target or cursor.  The initial increase in 
tracking error is more abrupt for the cursor suppression 
group than for the target suppression group.  Error then 
decreases quickly and returns to the level before 
disappearance. Third, and most importantly for our purpose, 
the error during the suppression period varies across the 
learning blocks.  In the target suppression group, tracking 
error is clearly higher for blocks 1-3 than blocks 4-6.  The 
cursor suppression group also shows differences between 
blocks, but these are somewhat smaller than in the target 
suppression group. 

The improvement across blocks in tracking during the 
suppression period arises from learning an internal model of 
either the target movement (target suppression group) or the 
subject’s own movement (cursor suppression group).  We 
therefore calculated mean tracking error on each trial during 
an epoch from the time of disappearance to 2 sec after 
reappearance.  We compared the tracking error in the first 
and last learning blocks, using a mixed ANOVA with 
factors of group (between-subjects) and block (within-
subjects).  This showed a significant effect of block [F(1,18) 
= 11.514, p = .003] with lower tracking error in block 6 than 
in block 1, as predicted.  There was no significant effect of 
group [F(1,18) = 3.701, p = .070] and no interaction 
[F(1,18) = 1.859, p = .190].  We also compared the tracking 
error in the first and last learning blocks in each group 
separately. The results showed significant effects of learning 
in target suppression group [t(18) = 2.722, p = .0007] and 
also in cursor suppression group [t(18) = 1.923, p = .0035].  
Thus, subjects learned to track during the suppression period. 

Transfer of Learning 
We investigated transfer of internal-model learning by 
comparing tracking performance on the two transfer blocks 
with tracking performance on the first two learning blocks 
(Adams, 1987).  A hypothesis of no transfer between one 
suppression condition and the other would predict that 
tracking error during the suppression period on the transfer 
task would be no better than at the very start of learning: 
subjects would need to learn the new suppression condition 
de novo.  Conversely, if learning during one suppression 
condition transferred to the other condition, then 

performance on the transfer blocks should be better than the 
initial learning blocks.  If no transfer between the two 
suppression conditions were observed, we would conclude 
that learning an internal model of the target and learning an 
internal model of the manual action were quite different 
processes, which involved separate internal models.  
However, if perfect transfer were found, we would conclude 
that a single, common learning process underlay both 
suppression conditions. 

However, transfer between two tasks may also be 
asymmetric, and the direction of asymmetry gives important 
information about the underlying cognitive operations that 
are learned.  In this experiment, for the group who learned 
target suppression, positive transfer to the subsequent cursor 
suppression test would suggest that learning an internal 
model of the target is sufficient for learning about the 
actions to track it.  For the group who learned cursor 
suppression, positive transfer to the subsequent target 
suppression test would imply that learning an internal model 
of one’s own action is sufficient for learning trajectories of 
external visual objects. 

We therefore subjected the tracking error data to a mixed 
ANOVA model with factors of learning group (target 
suppression, cursor suppression) and learning phase 
(learning, transfer).  The results showed a non-significant 
effect of group [F(1,18) = 4.188, p = .056], with those 
initially learning cursor suppression showing slightly better 
performance overall.  There was a significant effect of 
learning phase [F(1,18) = .401, p = .021], due to an overall 
positive transfer effect.  That is, performance in the transfer 
blocks was significantly better than initial learning.  Most 
importantly, there was a significant interaction [F(1,18) = 
11.341, p = .003].  Follow-up simple effects testing was 
used to investigate the source of this interaction.  The results 
are shown in Figure 3.  The group who initially learned with 
target suppression, showed a non-significant negative 
transfer to subsequent testing with cursor suppression [t(18) 
= .001, n.s.].  In contrast, the group who initially learned 
with cursor suppression showed significant positive transfer 
to subsequent testing with target suppression [t(18) = 2.460, 
p = .024]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Transfer of learning. 
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Discussion 

Predictive models in visuomotor learning 
This paper has used a conventional pursuit tracking task 
with suppression of the tracking target or of the subject’s 
own movement cursor as a method to investigate two kinds 
of predictive learning involved in visuomotor control.  
Suppressing either the target or the cursor removes the 
possibility of visual feedback-driven error corrections, and 
requires the subject to continue tracking based on purely 
predictive representations.  In target suppression, the subject 
must predict the current position of the target, yet the cursor 
continues to give visual information about hand position.  In 
cursor suppression, the subject must estimate or predict the 
current position of the cursor corresponding to their own 
hand position, although they continue to see the visual target.  
We found clear evidence for learning in both situations, 
based on a reduction in tracking error during the suppression 
period.  Since feedback-error-driven correction cannot occur 
during either target or cursor suppression, improvements in 
suppressed tracking during the course of the experiment 
suggest that subjects must learn internal representations of 
the target movement, and also of their own movement.  
Many studies of tracking behavior agree that the motor 
learning underlying tracking performance is predictive in 
nature (Craik, 1947).  Improvements in tracking 
performance may therefore occur because prediction 
improves with practice: subjects learn to predict.  For 
example, the intermittent corrections associated with 
sampling methods of tracking control decreased over 5 days 
of learning (Miall & Jackson, 2006). 

Learning about cursors or about targets 
However, few tracking studies explicitly distinguished 
between prediction of the target trajectory, and prediction of 
one’s own motor output.  Beppu et al. (1987) reported 
tracking performance during periods of cursor suppression 
and target suppression in healthy volunteers, and cerebellar 
patients.  They found that suppressing either signal 
prevented intermittent visual feedback-driven corrections, 
but they did not distinguish between target and cursor 
suppression.  Haggard et al. (1995) distinguished between 
two error-correction processes in pursuit tracking, based on 
visual feedback-driven corrections and internal model 
estimates of current target and hand positions respectively.  
They found that both cursor suppression and target 
suppression had slight effects on normal subjects’ tracking, 
but dramatically reduced intermittent feedback-driven 
corrections in cerebellar patients.  More interestingly, cursor 
suppression, but not target suppression, produced a strongly 
cumulating pattern of error in the patients, where tracking 
movements became effectively open-loop.  They interpreted 
this result in terms of an internal forward model of current 
hand position, which contributed to tracking performance 
both during normal and suppressed tracking.  Cerebellar 
damage, however, impaired output of this model, making 
effective control of movement impossible. 

Studies of model learning 
Many recent studies have compared brain activity before 
and after tracking learning, and interpreted the observed 
differences as the result of learning an internal model.  
Many of these studies have focused on learning novel 
sensorimotor transformations (Imamizu et al., 1998, 2000).  
For example, Imamizu et al. (2000)’s subjects learned to 
move a computer mouse in a condition involving rotated 
visual feedback.  After controlling for changes in brain 
activity related to tracking error, a further learning-related 
process was identified in the cerebellum.  As this area was 
more active in rotated than in direct tracking, it was 
interpreted as an internal forward model of the sensorimotor 
transformation between the subject’s movement and the on-
screen cursor movement.  However, their design cannot 
separate the operation of the internal model from the visual 
feedback from the cursor, in the same way that cursor-
suppressed tracking does. 

Study of target prediction 
Grafton et al. (2001) studied the process of learning to 
predict target motions.  Subjects tracked a target which 
alternated between a random and a predictable sequence.  
An implicit learning paradigm showed that subjects learned 
the predictable target sequences, with corresponding 
reduction in tracking error.  Data from a similar PET 
experiment showed that this target learning was associated 
with increased activity in contralateral sensorimotor cortex, 
and decreased activity in ipsilateral cerebellum.  However, 
these changes could reflect either changes in error signals or 
changes associated with learning a model of the target 
motion. 

Transfer of learning 
The suppression technique allows learning about the target 
to be clearly separated from learning about one’s own 
movement.  An important question is whether we learn two 
separate internal models; one for the target motion and a 
second for their own manual movement, or whether there is 
a single visuomotor learning process which generalizes 
across these two components.  We used a classical transfer 
of learning design to investigate this issue.  Our results 
showed a clear positive transfer from learning about one’s 
own manual movement to learning about target motion, but 
not in the other direction.  This finding has two important 
implications.  First, learning internal models for motor 
control involves a distinct process from general prediction 
of external events.  Second, our results suggest a 
hierarchical organization of visuomotor control.  When 
subjects track in the cursor suppression condition, they learn 
an internal motor model.   Acquisition of this motor model 
also implies learning about purely perceptual events in the 
external world, since those subjects then perform well on 
target-suppressed trials which require them to have an 
internal model of the target motion.  Conversely, when 
subjects track in the target suppression condition, they learn 
an internal model which supports perceptual prediction of 
the target motion.  However, acquisition of the target model 
does not assist in learning about one’s own motor control, 
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because those subjects subsequently perform badly on 
cursor-suppressed trials which require an internal motor 
model.  From the point of view of underlying internal 
models, motor learning includes, or at least generalizes to, 
external perceptual learning.  In contrast, external perceptual 
learning is quite distinct from motor learning.  Our result 
implies an internal-external gradient of learning.  
Psychological theories have shifted from emphasis on 
passive perception to emphasis on interactive perception 
over recent decades (Goodale & Milner, 1992; Wexler & 
van Boxtel, 2005).  We suggest that learning internal 
representations of our own action systems may play an 
important role in learning about our perceptual world. 
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